Structure-specific chiroptical responses of hollow gold nanoprisms
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 20, Issue: 43, Page: 27675-27683
2018
- 7Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Chiroptical responses of plasmonic chiral nanostructures can be controllably tuned by judicious tailoring of their structural parameters. In this article, the chiroptical properties of a newly designed plasmon-supporting nanostructure, chiral hollow gold nanoprisms (HGNs), has been numerically investigated in detail. The most compelling observation is that the CD response and the dissymmetry factor (g, which is a measure of the strength of chiroptical responses) of the chiral HGNs are large and at the same time, highly structure-specific. Also, we observed finite CD activity not only in absorption and scattering but also in the extinction spectra, which is a signature of a typical 3D chiral structure. We show that the chiroptical responses of HGNs can be exponentially enhanced simply by controlling the cavity-position or cavity size. Our results reveal that the structure-specific chiroptical response is a result of structure-dependent interplay between the non-radiative (Ohmic) and radiative losses. We also show that the CD intensity of a suitably designed chiral HGN is higher than other nanoscale metasurfaces of comparable volume. The insights obtained from this comprehensive study assert that this unique chiral nanostructure has great potential for being used in numerous applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85056285572&origin=inward; http://dx.doi.org/10.1039/c8cp05298k; http://www.ncbi.nlm.nih.gov/pubmed/30375600; https://xlink.rsc.org/?DOI=C8CP05298K; https://dx.doi.org/10.1039/c8cp05298k; https://pubs.rsc.org/en/content/articlelanding/2018/cp/c8cp05298k
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know