Study of segmental dynamics and ion transport in polymer-ceramic composite electrolytes by quasi-elastic neutron scattering
Molecular Systems Design and Engineering, ISSN: 2058-9689, Vol: 4, Issue: 2, Page: 379-385
2019
- 35Citations
- 67Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Composite electrolytes composed of a polymer electrolyte and an ion-conducting ceramic are promising in fulfilling the requirements for a stable lithium metal anode. In this work, we identify the effects of the surface of a lithium-ion-conducting ceramic, the Ohara LICGC™ ceramic, on the segmental dynamics and ionic conductivity of polymer electrolyte consisting of poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Using quasi-elastic neutron scattering, we study the segmental motion of PEO chains under the confinement of LiTFSI salt and Ohara ceramic, in to the melt state (363 K). We compare the relaxation time, τ, and the monomeric friction coefficient, ζ, of four samples: neat PEO, PEO + Ohara ceramic, PEO + LiTFSI and PEO + LiTFSI + Ohara ceramic. In the absence of LiTFSI, Ohara ceramic posed negligible change in the segmental dynamics of PEO. In contrast, with the presence of LiTFSI, Ohara ceramic slowed down the segmental motion of PEO chains by ∼60% compared to neat PEO + LiTFSI. The intrinsic ionic conductivity of the polymer phase in the composite decreased by ∼30% compared to the neat polymer electrolyte. The underpinnings of these results may be that polymer chains in the vicinity of the ceramic surface are less mobile due to coordination with surface bound lithium ions.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know