Effect of the π-linker on the performance of organic photovoltaic devices based on push-pull D-π-A molecules
New Journal of Chemistry, ISSN: 1369-9261, Vol: 42, Issue: 14, Page: 11458-11464
2018
- 9Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Two push-pull D-π-A molecules, 3T and DTT as donor materials, were synthesized and characterized for solution-processed bulk heterojunction (BHJ) organic photovoltaic (OPV) devices. The π-linker plays a vital role not only in electrochemical and thermal properties but also affects the thin film morphology of 3T and DTT. 3T showed the high electrochemical stability with a faster electrode reaction rate. The solution-processed OPV devices based on 3T showed higher power conversion efficiencies than DTT-based devices because of its superior electrochemical properties.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know