Porous CeO nanospheres for a room temperature triethylamine sensor under high humidity conditions
New Journal of Chemistry, ISSN: 1369-9261, Vol: 42, Issue: 19, Page: 15954-15961
2018
- 41Citations
- 27Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The development of highly sensitive and selective gas sensors is essential for the detection of harmful compounds. However, the gas-sensing performance presents some challenging issues such as the requirement of high operating temperatures and the negative impact of humidity. Herein, we have prepared porous CeO nanospheres (NS) using a simple microwave-assisted solvothermal method, followed by calcination, and demonstrated the triethylamine (TEA) sensing performance of the NS at room temperature and a relative humidity of 98%. The sensor showed enhanced sensing properties towards TEA compared to other volatile organic compounds. Significantly, the CeO NS exhibited a response of 4.67 to 100 ppm of TEA with a fast response time of 13 s. Furthermore, the sensor was able to detect low TEA concentrations (5 ppm) and presented excellent repeatability. The outstanding sensing properties are attributed to the high specific surface area, the porous structure of CeO NS (which allows a great gas diffusion), and the increased number of active sites for TEA oxidation due to the formation of hydroxyl groups on the CeO surface from high humidity conditions. Thus, the use of CeO NS is a promising approach by which to fabricate TEA sensors that operate at room temperature and high humidity levels.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know