The effect of fluorination on chain transfer reactions in the radical polymerization of oligo ethylene glycol ethenesulfonate monomers
Polymer Chemistry, ISSN: 1759-9962, Vol: 9, Issue: 30, Page: 4172-4186
2018
- 1Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We synthesized graft copolymers comprising a poly(ethenesulfonate) (PES) backbone with oligo ethylene glycol or oligo perfluoropolyether side-chains for the first time. The effect of fluorination on the polymerization of oligo ethylene glycol ethenesulfonate (EGES) monomers, containing one (EG1ES) or three (EG3ES) ethylene glycol units, was studied. In a conventional free radical polymerization, EGES monomers formed only oligomers. In contrast, the fluorinated oligo ethylene glycol ethenesulfonate (FEGES) monomers, containing two (FEG2ES) or three (FEG3ES) fluorinated ethylene glycol units, showed high conversions and high molecular weights. The reason for this drastic effect was the suppression of chain transfer reactions from methylene ether and methoxy groups, as we deduced from end-group analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS). This technique was not only used for a detailed end-group analysis, but also to determine the absolute molecular weight of PESs. Furthermore, we tested the reversible addition-fragmentation chain transfer (RAFT) polymerization of the FEGES monomers. Whereas the RAFT polymerization of FEG2ES was dominated by recombination processes, we achieved high end-group fidelity for PFEG3ES with an ethyldithiocarbonate chain transfer agent. PFEG2ES synthesized by RAFT was semi-crystalline, while PFEG3ES was fully amorphous at room temperature, as proved by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and wide-angle X-ray scattering (WAXS). Their low crystallinity, their adequate thermal stability and their reduced flammability due to the fluorination make PFEGES polymers potential materials as solid polymer electrolytes for battery applications.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know