Sustainable synthesis and characterization of a bisphenol A-free polycarbonate from a six-membered dicyclic carbonate
Polymer Chemistry, ISSN: 1759-9962, Vol: 9, Issue: 27, Page: 3798-3807
2018
- 12Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes10
- CrossRef10
- 10
- Patent Family Citations2
- Patent Families2
- Captures33
- Readers33
- 33
Article Description
A bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA)-free polycarbonate (PC) from a six-membered di-cyclic carbonate, di-trimethylolpropane di-cyclic carbonate (DTMPC), was developed as a new type of PC by ring opening homo-polymerization. The polymerization was controlled by using metal-free organic-based catalyst systems. The results indicated that the conversion rate depends on the basicity of the catalyst in the order of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 4-dimethylaminopyridine (DMAP), and triethylamine (TEA) from high to low. Over 99% conversion of DTMPC was obtained at 130 °C within 15 min by TBD, DBU and DMAP. The resulting PC as a homo-polymer showed high optical transparency and hardness, low swelling property in organic solvents, and thermal stability at temperatures as high as 200 °C. A high cell viability and cyto-compatibility of C3H 10T1/2 cells seeded directly on the surface of PC films were obtained. This implied that PC is a viable material for biomedical and consumer products applications where safety is an important consideration.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85049913911&origin=inward; http://dx.doi.org/10.1039/c8py00676h; http://www.ncbi.nlm.nih.gov/pubmed/30581494; https://xlink.rsc.org/?DOI=C8PY00676H; https://dx.doi.org/10.1039/c8py00676h; https://pubs.rsc.org/en/content/articlelanding/2018/py/c8py00676h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know