Gravitational collapse of colloidal gels: Non-equilibrium phase separation driven by osmotic pressure
Soft Matter, ISSN: 1744-6848, Vol: 14, Issue: 17, Page: 3265-3287
2018
- 44Citations
- 54Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations44
- Citation Indexes44
- CrossRef44
- 40
- Captures54
- Readers54
- 54
Article Description
Delayed gravitational collapse of colloidal gels is characterized by initially slow compaction that gives way to rapid bulk collapse, posing interesting questions about the underlying mechanistic origins. Here we study gel collapse utilizing large-scale dynamic simulation of a freely draining gel of physically bonded particles subjected to gravitational forcing. The hallmark regimes of collapse are recovered: slow compaction, transition to rapid collapse, and long-time densification. Microstructural changes are monitored by tracking particle positions, coordination number, and bond dynamics, along with volume fraction, osmotic pressure, and potential energy. Together these reveal the surprising result that collapse can occur with a fully intact network, where the tipping point arises when particle migration dissolves strands in a capillary-type instability. While it is possible for collapse to rupture a gel network into clusters that then sediment, and hydrodynamic interactions can make interesting contributions, neither is necessary. Rather, we find that the "delay" arises from gravity-enhanced coarsening, which triggers the re-emergence of phase separation. The mechanism of this transition is a leap toward lower potential energy of the gel, driven by bulk negative osmotic pressure that condenses the particle phase: the gel collapses in on itself under negative osmotic pressure allowing the gel, to tunnel through the equilibrium phase diagram to a higher volume fraction "state". Remarkably, collapse stops when condensation stops, when gravitational advection produces a positive osmotic pressure, re-arresting the gel.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85046664128&origin=inward; http://dx.doi.org/10.1039/c8sm00002f; http://www.ncbi.nlm.nih.gov/pubmed/29637976; https://xlink.rsc.org/?DOI=C8SM00002F; https://dx.doi.org/10.1039/c8sm00002f; https://pubs.rsc.org/en/content/articlelanding/2018/sm/c8sm00002f
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know