Computational investigation of microgels: Synthesis and effect of the microstructure on the deswelling behavior
Soft Matter, ISSN: 1744-6848, Vol: 14, Issue: 34, Page: 7083-7096
2018
- 40Citations
- 34Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations40
- Citation Indexes40
- 40
- CrossRef36
- Captures34
- Readers34
- 34
Article Description
We present computer simulations of a realistic model of microgels. Unlike the regular network frameworks usually assumed in the simulation literature, we model and simulate a realistic and efficient synthesis route, mimicking cross-linking of functionalized chains inside a cavity. This model is inspired, e.g., by microfluidic fabrication of microgels from macromolecular precursors and is different from standard polymerization routes. The assembly of the chains is mediated by a low fraction of interchain crosslinks. The microgels are polydisperse in size and shape but globally spherical objects. In order to deeply understand the microgel structure and eventually improve the synthesis protocol we characterize their conformational properties and deswelling kinetics, and compare them with the results found for microgels obtained via underlying regular (diamond-like) structures. For the same molecular weight, monomer concentration and effective degree of cross-linking, the specific microstructure of the microgel has no significant effect on the locus of the volume phase transition (VPT). However, it strongly affects the deswelling kinetics, as revealed by a consistent analysis of the domain growth during the microgel collapse. Though both the disordered and the regular networks exhibit a similar early growth of the domains, an acceleration is observed in the regular network at the late stage of the collapse. Similar trends are found for the dynamic correlations coupled to the domain growth. As a consequence, the fast late processes for the domain growth and the dynamic correlations in the regular network are compensated, and the dynamic correlations follow a power-law dependence on the growing length scale that is independent of the microgel microstructure.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85052739635&origin=inward; http://dx.doi.org/10.1039/c8sm01407h; http://www.ncbi.nlm.nih.gov/pubmed/30118116; https://xlink.rsc.org/?DOI=C8SM01407H; https://dx.doi.org/10.1039/c8sm01407h; https://pubs.rsc.org/en/content/articlelanding/2018/sm/c8sm01407h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know