Controlled generation of spiky microparticles by ionic cross-linking within an aqueous two-phase system
Soft Matter, ISSN: 1744-6848, Vol: 15, Issue: 16, Page: 3301-3306
2019
- 16Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef14
- Captures23
- Readers23
- 23
Article Description
Microparticles are used in a variety of different fields, such as drug delivery. Recently, non-spherical microparticle generation has become desirable. The high surface-to-volume ratio of non-spherical microparticles allows for enhanced targeting, and attachment to cells and tissue. Current non-spherical microparticle generation techniques require complicated setup, and utilizing natural micrograins, such as pollen grains, as non-spherical delivery vehicles, requires extensive post-processing. Here, we describe a unique and facile chemical synthesis approach, for controlled generation of pollen-like microparticles, based on ionic cross-linking of alginate and calcium chloride (CaCl ), within an all-biocompatible aqueous two-phase system (ATPS) of dextran (DEX) and polyethylene glycol (PEG). Our technique controls the length of spikes that emerge on the surface of these microparticles. We anticipate that these pollen-like spiky microparticles may be used as drug delivery vehicles, and this new chemical synthesis approach may be used for generating other biomaterials.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85064681067&origin=inward; http://dx.doi.org/10.1039/c8sm02315h; http://www.ncbi.nlm.nih.gov/pubmed/30849136; https://xlink.rsc.org/?DOI=C8SM02315H; https://dx.doi.org/10.1039/c8sm02315h; https://pubs.rsc.org/en/content/articlelanding/2019/sm/c8sm02315h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know