A stable electron-deficient metal-organic framework for colorimetric and luminescence sensing of phenols and anilines
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 6, Issue: 19, Page: 9236-9244
2018
- 133Citations
- 51Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A 3D metal-organic framework (LVMOF-1) with unique electron-deficient channels was synthesized and its sensing properties for electron-rich benzene derivatives were demonstrated. The MOF is built of robust [Eu(OH)(COO)] columns and tetratopic viologen-based crosslinkers and shows excellent chemical stability. The structure integrates Eu(iii) centers to luminesce and viologen moieties to accept electrons, and most notably, the electron-deficient viologen moieties, like those in box-like diviologen cyclophanes, are ideally spaced for sandwiching electron-rich aromatic rings. The MOF shows a bimodal response (color and luminescence) to phenols, anilines, benzenediols and aminophenols, with excellent selectivity against a wide range of other organic molecules. The chromogenic phenomena allow facile, quick and naked-eye test-paper detection of these priority contaminants in water, while the luminescence response affords very fast and sensitive quantitative detection. In particular, the detection limits for anilines and benzenediols are as low as 1-9 ppb. The charge transfer and energy transfer mechanisms for the sensing properties were elucidated on the basis of X-ray crystallography after single-crystal-to-single-crystal adsorption and orbital energy analyses according to electrochemical and spectroscopic data and also DFT calculations. The MOF bridges the gap between discrete cyclophanes functioning in solution and extended porous lattices in the solid state and can provide a blueprint for further development of sensory MOFs.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know