SnO-TiC MXene electron transport layers for perovskite solar cells
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 7, Issue: 10, Page: 5635-5642
2019
- 198Citations
- 187Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
MXenes, a class of two-dimensional (2D) transition metal carbides and nitrides, have a wide range of potential applications due to their unique electronic, optical, plasmonic, and other properties. Herein, we explore the use of the TiC MXene in organic-inorganic lead halide perovskite solar cells (PSCs). SnO-TiC MXene nanocomposites with different contents of TiC (0, 0.5, 1.0, 2.0, and 2.5 wt‰) were used as electron transport layers (ETLs) in low-temperature processed planar-structured PSCs. Mixing SnO with 1.0 wt‰ TiC effectively increases the power conversion efficiency (PCE) from 17.23% to 18.34%, whereas the device prepared with pristine TiC as the ETL achieves a PCE of 5.28%. Photoluminescence and electrochemical impedance spectroscopy results reveal that metallic TiC MXene nanosheets provide superior charge transfer paths, enhancing electron extraction, electron mobility, and decreasing the electron transfer resistance at the ETL/perovskite interface, and thus leading to higher photocurrents. This work proposes a new field of application for MXenes and a promising method to increase the efficiency of solar cells.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know