An injectable dipeptide-fullerene supramolecular hydrogel for photodynamic antibacterial therapy
Journal of Materials Chemistry B, ISSN: 2050-750X, Vol: 6, Issue: 44, Page: 7335-7342
2018
- 129Citations
- 82Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations129
- Citation Indexes129
- 129
- CrossRef116
- Captures82
- Readers82
- 82
Article Description
Photodynamic therapy (PDT) is a promising treatment against multiantibiotic-resistant bacteria with the advantage of a low tendency towards antibiotic resistance. Due to their high PDT efficiencies and superior chemical stabilities, fullerenes have been proposed as effective photosensitizers for the photodynamic inactivation of bacteria. However, the biomedical applications of fullerenes are hindered by their limited aqueous solubility and apparent tendency to undergo aggregation. Herein, we report a hybrid supramolecular hydrogel prepared by the peptide-modulated self-assembly of fullerenes for targeted and sustained photodynamic antibacterial therapy. Aggregation of the fullerene in the hydrogel is largely inhibited through the non-covalent interactions between the peptide and the fullerene. Consequently, the PDT efficiency of the peptide-fullerene hydrogel is highly improved as compared to the untreated fullerene. The incorporation of fullerene profoundly improves the mechanical properties of the hydrogel, making the peptide-fullerene hydrogel a better injectable formulation for biomedical applications. In vitro and in vivo antibacterial results indicate that the peptide-fullerene hydrogels can effectively inhibit multiantibiotic-resistant Staphylococcus aureus and promote wound healing. This study offers a promising paradigm to adapt self-assembling small peptides with integration of multiple functions for biomedical applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85056598110&origin=inward; http://dx.doi.org/10.1039/c8tb01487f; http://www.ncbi.nlm.nih.gov/pubmed/32254642; https://xlink.rsc.org/?DOI=C8TB01487F; https://dx.doi.org/10.1039/c8tb01487f; https://pubs.rsc.org/en/content/articlelanding/2018/tb/c8tb01487f
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know