Enhanced dielectric performance of PDMS-based three-phase percolative nanocomposite films incorporating a high dielectric constant ceramic and conductive multi-walled carbon nanotubes
Journal of Materials Chemistry C, ISSN: 2050-7526, Vol: 6, Issue: 40, Page: 10829-10837
2018
- 71Citations
- 53Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Three-phase composite films CCTO@MWCNT/PDMS with enhanced dielectric constant (ε) and low dielectric loss are prepared by embedding covalently bonded calcium copper titanate (CaCuTiO, CCTO) with multi-walled carbon nanotubes (MWCNTs) composite nanoparticles (CCTO@MWCNT), forming a chain-ball structure, into the polydimethylsiloxane (PDMS) matrix. To impede the natural stacking of MWCNTs, CCTO particles are functionalized first with a silane coupling agent containing amino groups, and then react with carboxyl-functionalized MWCNTs (MWCNT-COOH) to achieve the strong linkage between CCTO and MWCNTs, confirmed by the FTIR spectrum and SEM images, etc. The chain-ball CCTO@MWCNT nanoparticles have effectively improved the dielectric permittivity of PDMS. The dielectric constant of the CCTO@MWCNT/PDMS composite film, agreeing well with the percolation theory, is up to 2133 at 1 kHz, higher than that of pure PDMS by a factor of 700, when the volume fraction of MWCNTs approaches the percolative threshold. Meanwhile, the dielectric loss is only 0.19. For comparison, CCTO/PDMS and MWCNT/PDMS films are prepared and investigated as well. The Yamada model can effectively predict the dielectric constant of CCTO/PDMS composite films. The dielectric constants of CCTO/PDMS and MWCNT/PDMS films are 1/180 and 1/6, respectively, in comparison with that of CCTO@MWCNT/PDMS. The tensile strength of CCTO@MWCNT/PDMS approaches 1.12 MPa, 3 times higher than that of pure PDMS.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know