The unexpected effect of vacancies and wrinkling on the electronic properties of MoS layers
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 21, Issue: 44, Page: 24731-24739
2019
- 6Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We report a combined experimental/theoretical approach to study the connection of S-vacancies and wrinkling on MoS layers, and how this feature produces significant changes in the electronic structure and reactivity of this 2D material. The MoS material, when used as a catalyst in operative conditions, was found to be mainly composed of thin and short 1-5 layer sheets instead of a poorly crystalline structure, as it was previously assumed. Notably wrinkled structures with S-vacancies were also found through transmission electron microscopy. Atomistic simulations revealed a natural connection between sulfur-vacancies, wrinkling and folding. Density functional calculations further revealed that such curved structures present a lower electronic band-gap and a higher reactivity towards thiophene compared to the planar MoS counterpart.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85075110727&origin=inward; http://dx.doi.org/10.1039/c9cp04347k; http://www.ncbi.nlm.nih.gov/pubmed/31681939; https://xlink.rsc.org/?DOI=C9CP04347K; https://dx.doi.org/10.1039/c9cp04347k; https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp04347k
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know