Unexpected dynamical effects change the lambda-doublet propensity in the tunneling region for the O(P) + H reaction
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 21, Issue: 45, Page: 25389-25396
2019
- 5Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef3
- Captures4
- Readers4
Article Description
One of the most relevant features of the O(P) + H reaction is that it occurs on two different potential energy surfaces (PESs) of symmetries A′ and A′′ that correlate reactants and products. The respective saddle points, which correspond to a collinear arrangement, are the same for both PESs, whilst the barrier height rises more abruptly on the A′ PES than on the A′′ PES. Accordingly, the reactivity on the A′′ PES should be always higher than on the A′ PES. In this work, we present accurate quantum-scattering calculations showing that this is not always the case for rotationless reactants, where dynamical factors near the reaction threshold cause the A′ PES to dominate at energies around the barrier. Further calculation of cross sections and Λ-doublet populations has allowed us to establish how the reaction mechanism changes from the deep tunneling regime to hyperthermal energies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85075591847&origin=inward; http://dx.doi.org/10.1039/c9cp04690a; http://www.ncbi.nlm.nih.gov/pubmed/31709441; https://xlink.rsc.org/?DOI=C9CP04690A; https://dx.doi.org/10.1039/c9cp04690a; https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp04690a
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know