Revealing interfacial disorder at the growth-front of thick many-layer epitaxial graphene on SiC: A complementary neutron and X-ray scattering investigation
Nanoscale, ISSN: 2040-3372, Vol: 11, Issue: 30, Page: 14434-14445
2019
- 6Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations6
- Citation Indexes6
- CrossRef5
- Captures9
- Readers9
Article Description
Epitaxial graphene on SiC provides both an excellent source of high-quality graphene as well as an architecture to support its application. Although single-layer graphene on Si-face SiC has garnered extensive interest, many-layer graphene produced on C-face SiC could be significantly more robust for enabling applications. Little is known, however, about the structural properties related to the growth evolution at the buried interface for thick many-layer graphene. Using complementary X-ray scattering and neutron reflectivity as well as electron microscopy, we demonstrate that thick many-layer epitaxial graphene exhibits two vastly different length-scales of the buried interface roughness as a consequence of the Si sublimation that produces the graphene. Over long lateral length-scales the roughness is extremely large (hundreds of Å) and it varies proportionally to the number of graphene layers. In contrast, over much shorter lateral length-scales we observe an atomically abrupt interface with SiC terraces. Graphene near the buried interface exhibits a slightly expanded interlayer spacing (∼1%) and fluctuations of this spacing, indicating a tendency for disorder near the growth front. Nevertheless, Dirac cones are observed from the graphene while its domain size routinely reaches micron length-scales, indicating the persistence of high-quality graphene beginning just a short distance away from the buried interface. Discovering and reconciling the different length-scales of roughness by reflectivity was complicated by strong diffuse scattering and we provide a detailed discussion of how these difficulties were resolved. The insight from this analysis will be useful for other highly rough interfaces among broad classes of thin-film materials.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85070848404&origin=inward; http://dx.doi.org/10.1039/c9nr03504d; http://www.ncbi.nlm.nih.gov/pubmed/31334737; https://xlink.rsc.org/?DOI=C9NR03504D; https://dx.doi.org/10.1039/c9nr03504d; https://pubs.rsc.org/en/content/articlelanding/2019/nr/c9nr03504d
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know