Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors
Polymer Chemistry, ISSN: 1759-9962, Vol: 10, Issue: 45, Page: 6122-6130
2019
- 17Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymerization crosslinking of controlled triblock precursor polymers with reactive sites in the outer blocks. In the current study, we evaluated the effects of the structures of the triblock precursors including the sequence, molecular weight, and composition on the gelation reaction and the swelling properties of the obtained gels in detail. The gelation reaction and the volume at the swelling state at a low temperature were strongly affected by the molecular weight of the middle block of a precursor, whereas the temperature and the sharpness of the response were controlled by the composition of a precursor. Interestingly, the gel consisting of thermoresponsive CDs and hydrophilic bridging chains had improved elastic modulus and elongation ability upon heating in air without external water, probably because water flowed between the thermoresponsive CDs and the domains of the hydrophilic bridging chains in response to temperature change.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know