Experimental and computational investigations of C-H activation of cyclohexane by ozone in liquid CO
Reaction Chemistry and Engineering, ISSN: 2058-9883, Vol: 5, Issue: 4, Page: 793-802
2020
- 7Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Facile cyclohexane oxidation by ozone in liquid CO was demonstrated in a Parr reactor equipped with in situ infrared probe. The dominant presence of CO in the vapor phase allows operation below the lower flammability limit. At 280 K, 6.9 MPa and a molar feed O3/cyclohexane ratio ≃0.5, the cyclohexane conversion was ∼12% during a 1 h batch run with cyclohexanone (K) + cyclohexanol (A) yield and K/A being ∼11% and ∼100, respectively. Small but measurable amounts of hydrogen peroxide were also formed. The absence of any detectable water in the product and the close match of cyclohexane conversion and product yield rule out significant cyclohexane combustion. The observed products are consistent with reaction pathways predicted by density functional theory (DFT) computations and involve the formation of a hydrotrioxide (HO3C6H11) intermediate. The DFT-computed energetics of the initial hydrogen-atom transfer reaction between O3 and cyclohexane to give the hydrotrioxide were validated by comparison with multi-reference complete active space self-consistent field (CASSCF) computations, which included n-electron valence state perturbation theory (NEVPT2) for dynamic correlation. Even though DFT cannot properly treat the multireference character of O3, the agreement between these methods was reasonable. Preliminary studies of isooctane ozonation demonstrate that ozone is capable of activating all carbons (with a preference for the primary carbon) producing a variety of oxygenated products (alcohols, ketones and acid) with negligible formation of combustion products. These results clearly demonstrate the ability of ozone in selectively oxidizing C-H bonds in alkanes.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know