A fused-ring non-fullerene acceptor based on a benzo[1,2-: B:4,5- b ′]dithiophene central core with a thieno[3,2- b] thiophene side-chain for highly efficient organic solar cells
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 7, Issue: 18, Page: 10905-10911
2019
- 18Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A new electron-rich central core (BTT) based on benzo[1,2-b:4,5-b′]dithiophene with a thio[3,2-b]thiophene side chain was coupled with methyl and fluorine-modified 1,1-dicyanomethylene-3-indanone (IC) electron-withdrawing end groups to furnish two novel non-fullerene acceptors (NFAs), namely BTT-MIC and BTT-FIC. Compared to BTT-MIC, BTT-FIC exhibits a stronger near-infrared (NIR) absorption with a smaller optical bandgap (1.47 eV). The BTT-FIC/PM6 based device achieved a champion PCE of 12.65% for benzo[1,2-b:4,5-b′]di(cyclopenta[2,1-b:3,4-b′]dithiophene)-containing NFA based organic solar cells (OSCs), while the BTT-FIC/PM6 based device delivered a PCE of 10.04% with a high V of over 1 V. Fluorinated IC is more suitable for this new core BTT than methyl substituted IC, because fluorine atoms enhance the charge transport (CT) state (absorption) and are also beneficial to exciton dissociation, charge mobility and morphology. This work revealed that BTT with a thieno[3,2-b]thiophene side chain is an effective electron-donating core for creating effective NFAs and fluorinated IC is a suitable end group for BTT.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know