Controlling the C2+ product selectivity of electrochemical CO reduction on an electrosprayed Cu catalyst
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 8, Issue: 13, Page: 6210-6218
2020
- 48Citations
- 64Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Cu catalysts prepared by modifying bulk Cu foils have achieved high performance for value-added C2+ compounds from electrochemical CO reduction (CORR) but the transformation of active sites can be affected by the bulk substrate, which make it complex to design the catalyst. Herein, we newly introduce a simple electrospray pyrolysis method to take advantage of a facile wet-chemical synthesis applicable on non-copper substrates, such as a porous carbon paper, and demonstrate highly enhanced selectivity for CH production from CORR. The electrosprayed copper oxide on the carbon paper showed uniquely improved C2 selectivity compared with that on the copper substrate. The improved performance is proposed to be related to the presence of Cu mixed state and retention of morphology of the electrosprayed catalyst on the carbon paper, showing the importance of the substrate. In addition, the C2 product selectivity can be tuned by the electrospray synthesis time as it affects the size of the surface nanostructure as well as the porosity of the catalyst, which can provide an effective way to regulate the C2/C1 ratio.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know