3D printing of a poly(vinyl alcohol)-based nano-composite hydrogel as an artificial cartilage replacement and the improvement mechanism of printing accuracy
Journal of Materials Chemistry B, ISSN: 2050-7518, Vol: 8, Issue: 4, Page: 677-690
2020
- 99Citations
- 113Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations99
- Citation Indexes99
- 99
- CrossRef88
- Captures113
- Readers113
- 112
Article Description
Inspired by the gradient structure of articular cartilage, a poly(vinyl alcohol) (PVA)-based composite hydrogel with a biomimetic gradient structure as an artificial cartilage replacement was constructed by an extrusion 3D printing technique. The influence of the concentration and composition of the PVA-based solution on its rheological behavior and printability was studied, and the improvement mechanism for the 3D printing accuracy of the hydrogel was explored: introduction of GO or GO-HA gave rise to weakened inter-molecular hydrogen bonds and reduced entanglement density simultaneously, and the dynamic viscosity was highly improved. Therefore, the solution exhibited enhanced shear-Thinning behavior in the printing shear rate range and a reduced Barus effect, thus highly improving the printability and printing accuracy of the samples. The 3D printing of PVA hydrogels was successfully achieved, and the printed biomimetic gradient samples possessed suitable compressive and tribological properties, which showed promising potential in the precise customized repair of artificial cartilage.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85078683494&origin=inward; http://dx.doi.org/10.1039/c9tb02278c; http://www.ncbi.nlm.nih.gov/pubmed/31859324; https://xlink.rsc.org/?DOI=C9TB02278C; https://dx.doi.org/10.1039/c9tb02278c; https://pubs.rsc.org/en/content/articlelanding/2020/tb/c9tb02278c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know