Tailoring a periodic metal nanoantenna array using low cost template-assisted lithography
Journal of Materials Chemistry C, ISSN: 2050-7526, Vol: 7, Issue: 44, Page: 13818-13828
2019
- 11Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Recently, great effort has been invested into nanofabrication approaches that allow fast, reproducible and parallel surface patterning over a large area at the nanoscale. Here, a simple and reproducible approach for the fabrication of a large area highly ordered array of metal nanostructures by nanosphere lithography (NSL) is presented. Based on the self-assembly of close-packed polystyrene (PS) particles, at the air/water interface, this cost-effective approach enables the fabrication of a large-area and transferrable colloidal mask with a high quality crystal-like structure. An interesting tool based on optical diffraction for non-invasive inspection of the monolayer quality to perform in situ monitoring of the colloid packing at the air/water interface before deposition onto solid substrates was developed. Exploiting the interstitial geometry of the colloidal mask, a periodic array of plasmonic nanostructures was easily prepared. Tailoring the optical response of metal nanoparticle assemblies by controlling their morphology to route and manipulate light at the nanoscale is a key topic in the field of nano-optics; to this aim, exploitation of a low-cost nanofabrication technique, allowing a dynamic tunability either in morphology and periodicity arrangement, can be of remarkable added value in a cost-effectiveness evaluation. Here, the versatility of the NSL technique, coupled to a proper annealing post-processing is demonstrated to meet the above needs, allowing parallel surface patterning of large area metal assemblies in a hexagonal periodic configuration and morphology tuning from three dimensional nanoprisms to zero dimensional nanodot profiles. Related optical properties were monitored by UV-vis spectroscopy investigations and compared with proper theoretical analysis and numerical simulation.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know