A rolling circle amplification based platform for ultrasensitive detection of heparin
Analyst, ISSN: 1364-5528, Vol: 146, Issue: 2, Page: 714-720
2021
- 15Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes13
- 13
- CrossRef12
- Patent Family Citations2
- Patent Families2
- Captures9
- Readers9
Article Description
Heparin has a variety of pharmacological uses, including applications for anti-tumor metastasis, anti-inflammatory and anti-viral activities and is widely used as a clinical anticoagulant. Due to its widespread applications in the clinical procedures, monitoring heparin levels is critically important to ensure the safe use of heparin and to prevent overdose and complications, such as hemorrhage and thrombocytopenia. However, traditional heparin detection relies on the measurements of the activated clotting time or activated partial thromboplastin time, which are not sufficiently reliable or accurate measurements for certain clinical settings. In this work, we describe a dumbbell probe-aided strategy for ultrasensitive and isothermal detection of heparin based on a uniquely strong protamine-heparin interaction and rolling circle amplification driven signal amplification. The detection limit for heparin is 12.5 ng mL-1 (0.83 nM), which is much lower than the therapeutic level of heparin in cardiovascular surgery (17-67 μM) and in postoperative and long-term treatment (1.7-10 μM). Additionally, the proposed sensing platform works well for heparin monitoring in human plasma samples. This simple and ultrasensitive heparin biosensor has potential application in diagnostics, therapeutics, and in biological research.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85099964291&origin=inward; http://dx.doi.org/10.1039/d0an02061c; http://www.ncbi.nlm.nih.gov/pubmed/33226386; https://xlink.rsc.org/?DOI=D0AN02061C; https://dx.doi.org/10.1039/d0an02061c; https://pubs.rsc.org/en/content/articlelanding/2021/an/d0an02061c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know