A priori prediction of complex liquid-liquid-liquid equilibria in organic systems using a continuum solvation model
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 22, Issue: 38, Page: 22023-22034
2020
- 14Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Liquid-liquid-liquid equilibria (LLLE) is usually observed in many industrial processes primarily linked to enhanced oil recovery techniques. However their measurements are complex and so are their computations. An inherently predictive tool is often useful for elucidating their distribution ratios and phase compositions. In the present work, the phase behavior of nine ternary and two quaternary LLLE systems were predicted employing the quantum chemical based COnductor like Screening MOdel-Segment Activity Coefficient (COSMO-SAC) model. The methodology namely, Rachford-Rice LLLE (RRL3E) algorithm and Henley-Rosen LLLE (HRL3E) algorithm were used to predict the triphasic compositions in each system. In the RRL3E approach, the triphasic systems were assumed into two co-existing biphasic liquid-liquid equilibria systems, whereas in the HRL3E approach, all three phases were considered to be in equilibrium with each other simultaneously. Apart from predicting the local compositions, the HRL3E algorithm was also used to predict the individual phase splits and phase fractions of the LLLE region. Average overall root mean square deviation (rmsd (%)) values considering all 42 datasets and corresponding to 414 data points were recorded as 4.65% and 4.83% using the RRL3E and HRL3E algorithms respectively. Further, the RRL3E algorithm was extended to correlate the LLLE data for all systems using the Genetic Algorithm (GA) based NRTL (GA-NRTL) and UNIQUAC (GA-UNIQUAC) models.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85092681522&origin=inward; http://dx.doi.org/10.1039/d0cp03225e; http://www.ncbi.nlm.nih.gov/pubmed/32975264; https://xlink.rsc.org/?DOI=D0CP03225E; https://dx.doi.org/10.1039/d0cp03225e; https://pubs.rsc.org/en/content/articlelanding/2020/cp/d0cp03225e
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know