Optimizing supramolecular interactions in metal-organic frameworks for Cseparation
Dalton Transactions, ISSN: 1477-9234, Vol: 49, Issue: 44, Page: 15548-15559
2020
- 19Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations19
- Citation Indexes19
- 19
- CrossRef14
- Captures8
- Readers8
Review Description
C2 separation is of great importance in the petrochemical industry. Traditionally, it is performed by distillation at cryogenic temperatures, which necessitates the consumption of a huge amount of energy to operate the refrigeration system in the production process. In this regard, it is imperative to seek alternative separation methods with high efficiency and low energy cost. Although of recent origin, metal-organic frameworks (MOFs) have already been extensively studied as advanced adsorbents in many applications, and significant progress has been made particularly in gas separation owing to their unprecedented porosity and tunable structures. In this review, we extrapolated three most frequently invoked design strategies for efficient C2 separation hinged upon supramolecular interactions, including molecular sieving, gate opening, and surface engineering. Recent progress of MOF materials in C2 separation was highlighted within each of these strategies, and their advantages and limitations are compared and discussed. Accordingly, we provide perspectives on current challenges and future emphases in designing MOF materials for hydrocarbon separation. With our continued efforts in this area, we expect that integrating supramolecular interactions in a single MOF system is a viable approach to achieve a balance between adsorption capacity and selectivity for different hydrocarbon separation scenarios. This journal is
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85096355007&origin=inward; http://dx.doi.org/10.1039/d0dt03013a; http://www.ncbi.nlm.nih.gov/pubmed/33112316; https://xlink.rsc.org/?DOI=D0DT03013A; https://dx.doi.org/10.1039/d0dt03013a; https://pubs.rsc.org/en/content/articlelanding/2020/dt/d0dt03013a
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know