Optical thermometry based on the thermally coupled energy levels of Erin upconversion materials
Dalton Transactions, ISSN: 1477-9234, Vol: 49, Issue: 47, Page: 17115-17120
2020
- 69Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Contactless thermometry with the requirements of high accuracy and high efficiency is an extremely acute need in many fields. Optical thermometers based on the fluorescence intensity ratio (FIR) of the thermally coupled energy levels of Er3+ have been demonstrated to be excellent candidates to afford that due to their advantages of high spatial resolution, rapid response, anti-jamming capability, etc. In this paper, we summarize the recent developments in optical thermometry based on the FIR of the electronic levels Er3+:2H11/2/4S3/2 and the Stark sublevels of Er3+:4F9/2 and Er3+:4I13/2 manifolds, including physical mechanism, improvement of thermometric sensitivity, biological application and so on. Moreover, the challenges in creating novel Er3+-based optical thermometers and potentially new research directions for future work are discussed in detail. Overall, the Er3+-based optical thermometers have exhibited outstanding advantages for non-contact temperature sensing, but great efforts are still needed to improve their key performance indicators for meeting the demands of practical applications.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85098065029&origin=inward; http://dx.doi.org/10.1039/d0dt03100c; http://www.ncbi.nlm.nih.gov/pubmed/33020796; https://xlink.rsc.org/?DOI=D0DT03100C; https://dx.doi.org/10.1039/d0dt03100c; https://pubs.rsc.org/en/content/articlelanding/2020/dt/d0dt03100c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know