Differential effects of EPA and DHA on DSS-induced colitis in mice and possible mechanisms involved
Food and Function, ISSN: 2042-650X, Vol: 12, Issue: 4, Page: 1803-1817
2021
- 30Citations
- 23Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations30
- Citation Indexes30
- 30
- CrossRef19
- Captures23
- Readers23
- 23
Article Description
Background: The anti-inflammatory effect of n-3 PUFAs has been widely documented. Emerging evidence suggests that the main component of n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), may have differential effects in ulcerative colitis (UC). It was aimed to clarify their differential effects in UC. Methods: Eight-week-old male C57BL/6J mice were randomly divided into 7 groups, namely control, UC model, salicylazosulfapyridine (SASP), low-dose DHA, high-dose DHA, low-dose EPA, and high-dose EPA. DHA, EPA and SASP treatment groups were orally treated accordingly for 9 weeks. During the 5th to 9th week the control group was given distilled water, while other groups were given distilled water with 2% dextran sodium sulfate (DSS) to induce UC. Body weight loss, diarrhea, and stool bleeding were recorded to calculate the disease activity index (DAI). The level of tight junction proteins Claudin-1 and Occludin, and cytokines including TNF-α, IL-6, and IL-1β as well as inflammatory cell markers such as MPO, F4/80, and MCP-1 in the intestinal epithelium were measured using western blotting. Activation of IL-6/STAT3 and NLRP3/IL-1β inflammatory pathways was also assessed. Levels of proliferation-related proteins of the Wnt/β-catenin pathway with c-myc, Cyclin-D1, and PCNA were detected. Results: EPA, superior to DHA, significantly attenuated DSS-induced colitis evidenced by reduced DAI scores, cytokine production and inflammatory cell infiltration. Mechanically, EPA triggered a marked up-regulation of Claudin-1 and Occludin with down-regulation of their up-stream Akt and ERK. EPA also inhibited NLRP3/IL-1β and IL-6/STAT3 inflammatory pathways and up-regulated the Wnt/β-catenin pathway. Conclusions: EPA is more suitable to be used for the treatment of UC than DHA.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101923380&origin=inward; http://dx.doi.org/10.1039/d0fo02308f; http://www.ncbi.nlm.nih.gov/pubmed/33523066; https://xlink.rsc.org/?DOI=D0FO02308F; https://dx.doi.org/10.1039/d0fo02308f; https://pubs.rsc.org/en/content/articlelanding/2021/fo/d0fo02308f
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know