PlumX Metrics
Embed PlumX Metrics

First-principles study of Na insertion at TiOanatase surfaces: New hints for Na-ion battery design

Nanoscale Advances, ISSN: 2516-0230, Vol: 2, Issue: 7, Page: 2745-2751
2020
  • 78
    Citations
  • 0
    Usage
  • 37
    Captures
  • 0
    Mentions
  • 54
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    78
  • Captures
    37
  • Social Media
    54
    • Shares, Likes & Comments
      54
      • Facebook
        54

Article Description

Na-ion batteries (NIBs) are attracting widespread interest as a potentially more convenient alternative to current state-of-the-art Li-ion batteries (LIBs), chiefly for large-scale energy storage from renewables. Developing novel active materials is essential for the deployment of NIBs, especially in terms of negative electrodes that can accommodate the larger sodium ions. We focus on TiO2 anatase, which has been proposed as a promising anode material for the overall balance of performance, stability and cost. As the exposed crystal facets in different morphologies of nanostructured anatase can affect the electrochemical performances, here we report a theoretical investigation of Na+ adsorption and migration through (101), (100) and (001) surface terminations, thus explaining the different activities toward sodiation reported in the literature. Energy barriers computed by means of the CI-NEB method at the DFT+U level of theory show that the (001) surface is the most effective termination for Na+ insertion. We also provide a detailed analysis to elucidate that the energy barriers are due to structural modifications of the lattice upon sodiation. From these results we derive new design directions for the development of cheap and effective oxide-based nanostructured electrode materials for advanced NIBs.

Bibliographic Details

Massaro, Arianna; Muñoz-García, Ana B; Maddalena, Pasqualino; Bella, Federico; Meligrana, Giuseppina; Gerbaldi, Claudio; Pavone, Michele

Royal Society of Chemistry (RSC)

Chemical Engineering; Physics and Astronomy; Chemistry; Materials Science; Engineering

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know