Integration of bubble phobicity, gas sensing and friction alleviation into a versatile MoS/SnO/CNF heterostructure by an impressive, simple and effective method
Nanoscale, ISSN: 2040-3372, Vol: 12, Issue: 36, Page: 18629-18639
2020
- 3Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The engineering of composite surfaces and interfaces of materials at the micro/nano-hierarchical level with multiple functionalities is attracting increasing attention due to their biomimetic technological applications, especially the self-cleaning with gas bubbles, gas sensing and sustainable anti-friction performances. Herein, the ternary MoS2/SnO2/CNF (CNF: Carbon nanofiber) was designed and assembled by an in situ facile method. Interestingly, its microstructure exhibits a necklace-like morphology. The MoS2/SnO2/CNF shows desirable bubble phobicity under water and in a PAO4 environment on various substrates, an acceptable gas-sensing ability to target gas with a detection limit of 5 ppm and fascinating tribological performances for additives in different kinds of base/lubricating oils. These results demonstrate that the necklace-like ternary MoS2/SnO2/CNF structure could have numerous applications in one system and may provide a new perspective in composite surface and interface materials engineering.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85091649627&origin=inward; http://dx.doi.org/10.1039/d0nr05378c; http://www.ncbi.nlm.nih.gov/pubmed/32909567; https://xlink.rsc.org/?DOI=D0NR05378C; https://dx.doi.org/10.1039/d0nr05378c; https://pubs.rsc.org/en/content/articlelanding/2020/nr/d0nr05378c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know