Dimensional reduction of the small-bandgap double perovskite CsAgTlBr
Chemical Science, ISSN: 2041-6539, Vol: 11, Issue: 29, Page: 7708-7715
2020
- 47Citations
- 64Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations47
- Citation Indexes47
- 47
- CrossRef44
- Captures64
- Readers64
- 64
- Mentions2
- Blog Mentions2
- 2
Most Recent Blog
Associate Editor highlight – interview with Professor Hemamala Karunadasa
Professor Hemamala Karunadasa joined the Chemical Science Editorial Board in 2021. In 2020, the year of Chemical Science‘s 10th anniversary, we met virtually with Hemamala to discuss her research. In celebration of Hemamala joining the Editorial Board, we have taken the opportunity to revisit this interview. Hemamala’s research focuses on the preparation of solid-state materials using the tools of
Article Description
Quantum confinement effects in lower-dimensional derivatives of the ABX3 (A = monocation, X = halide) single perovskites afford striking optical and electronic changes, enabling applications ranging from solar absorbers to phosphors and light-emitting diodes. Halide double perovskites form a larger materials family, known since the late 1800s, but lower-dimensional derivatives remain rare and prior work has revealed a minimal effect of quantum confinement on their optical properties. Here, we synthesize three new lower-dimensional derivatives of the 3D double perovskite Cs2AgTlBr6: 2D derivatives with mono-(1-Tl) and bi-layer thick (2-Tl) inorganic sheets and a quasi-1D derivative (1'-Tl). Single-crystal ellipsometry studies of these materials show the first clear demonstration that dimensional reduction can significantly alter the optical properties of 2D halide double perovskites. This large quantum confinement effect is attributed to the substantial electronic delocalization of the parent 3D Ag-Tl perovskite. Calculations track the evolution of the electronic bands with dimensional reduction and the accompanying structural distortions and show a direct-to-indirect bandgap transition as the 3D perovskite lattice is thinned to a monolayer in 1-Tl. This bandgap transition at the monolayer limit is also evident in the calculations for 1-In, an isostructural, isoelectronic analogue to 1-Tl in which In3+ replaces Tl3+, underscoring the orbital basis for the direct/indirect nature of the bandgap. Thus, in complement to the massive compositional diversity of halide double perovskites, dimensional reduction may be used as a systematic route for harnessing electronic confinement effects and obtaining new electronic structures.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85089282698&origin=inward; http://dx.doi.org/10.1039/d0sc01580f; http://www.ncbi.nlm.nih.gov/pubmed/32874527; https://xlink.rsc.org/?DOI=D0SC01580F; https://dx.doi.org/10.1039/d0sc01580f; https://pubs.rsc.org/en/content/articlelanding/2020/sc/d0sc01580f
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know