An antibody-supermolecule conjugate for tumor-specific targeting of tumoricidal methylated β-cyclodextrin-threaded polyrotaxanes
Journal of Materials Chemistry B, ISSN: 2050-7518, Vol: 8, Issue: 31, Page: 6975-6987
2020
- 17Citations
- 10Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations17
- Citation Indexes16
- 16
- CrossRef13
- Patent Family Citations1
- 1
- Captures10
- Readers10
- 10
- Mentions1
- News Mentions1
- 1
Most Recent News
Opening an autophagy window as the apoptosis door starts to close
Many people across the globe are working hard to get the better of cancer; however cancer is always working too. Cancer cells can become resistant to the methods that have been adopted to kill them, so identifying drugs that act in different ways is part of the push to outsmart this ubiquitous disease. TMDU researchers have engineered a material that can identify cancer cells and mount an attack t
Article Description
We previously found that acid-labile polyrotaxane containing methylated β-cyclodextrin (Me-PRX) induces endoplasmic reticulum (ER) stress-related autophagy and autophagic cell death. Me-PRX-induced autophagic cell death occurs even in apoptosis-resistant cells; tumor-targeted Me-PRX delivery could thus be an effective cancer treatment approach. In this study, antibody-supermolecule conjugates, consisting of a tumor-specific antibody and Me-PRX, were designed to achieve a tumor-specific delivery of Me-PRX. Trastuzumab, a monoclonal antibody against HER2 expressed in various malignant tumors, was selected as a tumor-targeting antibody, and phenyl maleimide group-modified Me-PRX (Mal-Me-PRX) was conjugated to the cysteine residue of the reduced Trastuzumab to obtain a Trastuzumab-Me-PRX conjugate (Tras-Me-PRX). The cellular association of Tras-Me-PRX to HER2-expressing tumor cells was remarkably greater than that of unmodified Me-PRX. Moreover, Tras-Me-PRX effectively reduced the viability of HER2-expressing tumor cells at a lower concentration compared to the unmodified Me-PRX. In conclusion, antibody-Me-PRX conjugates are regarded as a new class of antibody-drug conjugates that would contribute to the chemotherapy of cancers. This journal is
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85089437174&origin=inward; http://dx.doi.org/10.1039/d0tb00575d; http://www.ncbi.nlm.nih.gov/pubmed/32573639; https://xlink.rsc.org/?DOI=D0TB00575D; https://dx.doi.org/10.1039/d0tb00575d; https://pubs.rsc.org/en/content/articlelanding/2020/tb/d0tb00575d
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know