Biomimetic artificial cells to model the effect of membrane asymmetry on chemoresistance
Chemical Communications, ISSN: 1364-548X, Vol: 57, Issue: 53, Page: 6534-6537
2021
- 15Citations
- 26Captures
- 3Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef11
- Captures26
- Readers26
- 26
- Mentions3
- News Mentions3
- 3
Most Recent News
New cancer treatments can be tested in artificial cells on tiny chips the size of a postage stamp
It usually takes 10 to 15 years to develop a new drug, and they cost around US$2.6 billion each. Because it's difficult to predict how a drug candidate will interact with human cells, many drugs never pass clinical trials. Testing new drugs on human cells is expensive and complicated, so it is difficult to do early in the development of a drug.
Article Description
We present a microfluidic platform that enables the formation of bespoke asymmetric droplet interface bilayers (DIBs) as artificial cell models from naturally-derived lipids. We use them to perform pharmacokinetic assays to quantify how lipid asymmetry affects the permeability of the chemotherapy drug doxorubicin. Previous attempts to model bilayer asymmetry with DIBs have relied on the use of synthetic lipids to achieve asymmetry. Use of natural lipids serves to increase the biomimetic nature of these artificial cells, showcasing the next step towards forming a true artificial cell membranein vitro. Here we use our microfluidic platform to form biomimetic, asymmetric and symmetric DIBs, with their asymmetry quantified through their life-mimicking degree of curvature. We subsequently examine permeability of these membranes to doxorubicin, and reveal measurable differences in its pharmacokinetics induced by membrane asymmetry, highlighting another factor that potentially contributes to chemoresistance in some forms of cancer.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85108990676&origin=inward; http://dx.doi.org/10.1039/d1cc02043a; http://www.ncbi.nlm.nih.gov/pubmed/34106114; https://xlink.rsc.org/?DOI=D1CC02043A; https://dx.doi.org/10.1039/d1cc02043a; https://pubs.rsc.org/en/content/articlelanding/2021/cc/d1cc02043a
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know