Time-dependent wave packet dynamics study of the resonances in the H + LiH(v = 0, j = 0) → Li + H reaction at low collision energies
Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 24, Issue: 25, Page: 15532-15539
2022
- 9Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef7
- Captures1
- Readers1
Article Description
The depletion process of LiH by H collision plays an important role in the evolution of the early universe and astrophysical processes, including the eventual charge-states, abundances of atomic and molecular species and ensuing astrochemistry. Here, a quantum dynamics study on the H + LiH(v = 0, j = 0) → Li + H reaction is performed at the low collision energy range from 0.1 meV to 10 meV using the time-dependent wave packet method. A Feshbach resonance peak is observed near 0.8 meV collision energy on the total reaction probability curves. This resonance originates from the coupling with the v = 0, j = 1 energy level of the reactant LiH, and it is dominated by the contributions of J = 0-4 partial waves. Another partial wave resonance is also found on the total integral cross section at 1.2 meV, which is closely connected to the opening of the J = 7 partial wave. The opening of the J = 7 partial wave generates a notable forward scattering peak, and the Feshbach resonance can promote both the forward and backward scatterings. Moreover, the total and product vibrational state-resolved rate coefficients for the temperature range of 1-100 K are also reported.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85132754524&origin=inward; http://dx.doi.org/10.1039/d1cp05601h; http://www.ncbi.nlm.nih.gov/pubmed/35713276; https://xlink.rsc.org/?DOI=D1CP05601H; https://dx.doi.org/10.1039/d1cp05601h; https://pubs.rsc.org/en/content/articlelanding/2022/cp/d1cp05601h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know