Growth of CeOnanocubes showing size-dependent optical and oxygen evolution reaction behaviors
Dalton Transactions, ISSN: 1477-9234, Vol: 50, Issue: 42, Page: 15170-15175
2021
- 11Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations11
- Citation Indexes11
- 11
- CrossRef10
- Captures7
- Readers7
Article Description
CeO2 nanocubes with average sizes of 9, 13, and 18 nm have been synthesized by preparing a slightly basic aqueous mixture of Ce(NO3)3, Na2SO4, and NH4OH and heating the solution to 100 to 150 °C in 4 or 9 h. The nanocubes possess high crystalline quality. Their band gaps decrease gradually beyond the quantum confinement regime from 3.57 eV to 3.45 eV with increasing particle sizes. The 9 nm CeO2 nanocubes have the most positive valence band energy and correspondingly they exhibit the best electrochemical oxygen evolution reaction activity. Since band gaps of semiconductor nanocrystals can be tuned substantially through particle size control to yield different band energies, this fact can be utilized to enhance the electrochemical and photocatalytic properties.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85118828529&origin=inward; http://dx.doi.org/10.1039/d1dt03150c; http://www.ncbi.nlm.nih.gov/pubmed/34617544; https://xlink.rsc.org/?DOI=D1DT03150C; https://dx.doi.org/10.1039/d1dt03150c; https://pubs.rsc.org/en/content/articlelanding/2021/dt/d1dt03150c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know