Defect engineered SnOnanoparticles enable strong COchemisorption toward efficient electroconversion to formate
Dalton Transactions, ISSN: 1477-9234, Vol: 51, Issue: 9, Page: 3512-3519
2022
- 9Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Oxygen vacancy (Ov) engineering of SnO2 electrocatalysts plays a crucial role in realizing efficient CO2 electroreduction (CO2RR) into formate. Herein, we demonstrate the rational synthesis of highly dispersed SnO2 nanoparticle electrocatalysts with an ultrahigh Ov content of up to 25.1% by a thermally induced strategy. The high Ov content greatly improves the intrinsic conductivity and remarkably enhances the chemisorption capacity to CO2, thus boosting the catalytic activity and reaction kinetics of CO2 electroconversion into formate. These advantages make the Ov-engineered SnO2 electrocatalysts exhibit both a high Faraday efficiency (FE) of nearly 90% and a superior cathodic energy efficiency of above 60% to produce formate in a wide current range from 100 to 400 mA cm-2 in a flow cell. A commercially required current of 200 mA cm-2 can be obtained at only 2.8 V in a full cell. The present Ov engineering strategy exhibits the possibility for the design and construction of high-activity oxide-based electrocatalysts.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85125554076&origin=inward; http://dx.doi.org/10.1039/d1dt04045f; http://www.ncbi.nlm.nih.gov/pubmed/35142780; https://xlink.rsc.org/?DOI=D1DT04045F; https://dx.doi.org/10.1039/d1dt04045f; https://pubs.rsc.org/en/content/articlelanding/2022/dt/d1dt04045f
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know