Nanocollision mediated electrochemical sensing of host-guest chemistry at a nanoelectrode surface
Faraday Discussions, ISSN: 1364-5498, Vol: 233, Issue: 0, Page: 222-231
2021
- 3Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef3
- Captures7
- Readers7
Article Description
Electrochemical (EC) measurements of dynamic nanoparticle collisions on a support electrode provide a powerful approach to study the electrical properties of interfacial molecules self-assembled on the electrode surface. By introducing a special cage-shaped macrocyclic molecule, cucurbit[7]uril (CB7), onto a gold nanoelectrode surface, we show that the dynamic interactions between CB7 and the colliding nanoparticles can be real-time monitored via the appearance of distinct EC current switching signals. When a guest molecule is included in the CB7 cavity, the changed host-guest chemistry can be probed via the amplitude change of the EC current signals. In addition, different guest molecules can be recognized by CB7 on the nanoelectrode surface, giving rise to distinguishable current jump signals for different host-guest systems. Remarkably, two well-defined current states are observed in the EC measurements of the CB7-ferrocene complex, indicating two orientation geometries of ferrocene inside the CB7 cavity can be resolved in this EC sensing platform. This work demonstrates an effective approach for studying the dynamics of host-guest chemistry at the liquid-solid interface and sheds light on a convenient EC sensor for the recognition of target molecules with the aid of CB7.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128244898&origin=inward; http://dx.doi.org/10.1039/d1fd00054c; http://www.ncbi.nlm.nih.gov/pubmed/34889917; https://xlink.rsc.org/?DOI=D1FD00054C; https://dx.doi.org/10.1039/d1fd00054c; https://pubs.rsc.org/en/content/articlelanding/2022/fd/d1fd00054c
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know