Transformation from a non-radical to a radical pathway: Via the amorphization of a Ni(OH)catalyst as a peroxymonosulfate activator for the ultrafast degradation of organic pollutants
Nanoscale, ISSN: 2040-3372, Vol: 13, Issue: 16, Page: 7700-7708
2021
- 12Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef8
- Captures4
- Readers4
Article Description
The peroxymonosulfate (PMS) activation reaction using transition-metal-based catalysts has been proven to be a promising approach for the degradation of refractory organic contaminants; however, the ambiguous structure-property relationship between the intrinsic free-radical and non-radical mechanistic pathway selectivity and structural characteristics greatly hinders the development of active catalysts. Taking Ni(OH)2 as a model catalyst, this work reveals that the pathway selectivity during PMS activation can be controlled via the construction of crystalline and amorphous structures. Electron paramagnetic resonance and radical quenching experiments verified that amorphous Ni(OH)2 with disordered -OH, synthesized via a formamide-assisted precipitation method, dramatically promotes the generation of OH and SO4- (the radical pathway), which highly improved the degradation efficiencies toward organic contaminants. However, crystalline Ni(OH)2 was found to activate PMS through via a non-radical pathway. Density functional theory calculations reveal that amorphous Ni(OH)2 possesses an electron-rich active surface, which favors the breaking of O-O bonds instead of O-H bonds in PMS molecules and triggers radical production. As confirmed via electrochemical measurements, the essence of PMS activation was uncovered; it was found that pathway selectivity was determined based on the electron-donating capabilities, which were highly dependent on the -OH group environments. Impressively, the catalytic mechanism of the same material can be successfully and precisely regulated from a non-radical to a radical pathway for PMS activation via a structural engineering method, which can simultaneously improve the catalytic performance for the effective elimination of emerging contaminants in aquatic environments.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85105180402&origin=inward; http://dx.doi.org/10.1039/d1nr00933h; http://www.ncbi.nlm.nih.gov/pubmed/33928993; https://xlink.rsc.org/?DOI=D1NR00933H; https://dx.doi.org/10.1039/d1nr00933h; https://pubs.rsc.org/en/content/articlelanding/2021/nr/d1nr00933h
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know