Synthesis of an amphiphilic copolymer using biopolymer-dextran via a combination of ROP and RAFT techniques
Polymer Chemistry, ISSN: 1759-9962, Vol: 13, Issue: 10, Page: 1394-1400
2022
- 6Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Ring-opening polymerization (ROP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization are efficient synthetic approaches to develop self-assembled copolymers with narrow dispersity (Crossed D sign). The main aim of this work is to develop a new pH-responsive amphiphilic graft copolymer [Dextran-g-(PHPMA-co-PCL)] comprised of dextran grafted with HPMA (hydroxypropyl methacrylate)-PCL (polycaprolactone) via the RAFT technique. Here, HPMA (as a monomer) has been modified using ϵ-caprolactone via the ROP technique to prepare a hydrophobic moiety. The chain length of HPMA-PCL has been varied to obtain graft copolymers with different hydrophobic segments. The controlled nature of the copolymer synthesis has been monitored using multiangle light scattering (MALS) attached to gel permeation chromatography (GPC). A fluorometric study has been performed to determine the critical micelle concentration (CMC) of the graft copolymer. Polymer chains can be efficiently self-assembled into spherical micelles in an aqueous solution as obvious from FESEM and TEM images. The suitability of the amphiphilic copolymer as a pH-responsive nanocarrier has been observed through an in vitro cumulative release study to deliver a model hydrophobic drug, dipyridamole.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know