PlumX Metrics
Embed PlumX Metrics

Study of anisotropic thermal conductivity in textured thermoelectric alloys by Raman spectroscopy

RSC Advances, ISSN: 2046-2069, Vol: 11, Issue: 39, Page: 24456-24465
2021
  • 5
    Citations
  • 0
    Usage
  • 8
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Polycrystalline p-type SbBiTe(SBT) and n-type BiTeSe(BTS) compounds possessing layered crystal structure show anisotropic electronic and thermal transport properties. This research is in pursuit of better understanding the anisotropic thermal properties using Raman spectroscopy. A systematic Raman spectroscopic study of the hot-pressed pellet of the textured p-type SBT and n-type BTS is reported in both directions: parallel (‖) and perpendicular (⊥) to the pressing axis as a function of temperature and laser power. The first-order temperature coefficient, optical thermal conductivity, and phonon lifetime are qualitatively determined from the temperature and laser power-dependent frequency and full-width half maximum (FWHM) of Raman peaks (A11g, E2g& A21g). Anisotropy in experimental phonon thermal conductivity in both directions is correlated with the approximated optical thermal conductivity, phonon lifetime and phonon anharmonicity. The anisotropy in phonon anharmonicity in both directions is explained by the modified Klemens-Hart-Aggarwal-Lax phonon decay model. In this study, the symmetric three-phonon scattering process is considered responsible for thermal transport in the temperature range of 300 to 473 K.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know