PlumX Metrics
Embed PlumX Metrics

Chemocatalytic value addition of glucose without carbon-carbon bond cleavage/formation reactions: an overview

RSC Advances, ISSN: 2046-2069, Vol: 12, Issue: 8, Page: 4891-4912
2022
  • 12
    Citations
  • 0
    Usage
  • 20
    Captures
  • 0
    Mentions
  • 87
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    12
    • Citation Indexes
      12
  • Captures
    20
  • Social Media
    87
    • Shares, Likes & Comments
      87
      • Facebook
        87

Review Description

As the monomeric unit of the abundant biopolymer cellulose, glucose is considered a sustainable feedstock for producing carbon-based transportation fuels, chemicals, and polymers. The chemocatalytic value addition of glucose can be broadly classified into those involving C-C bond cleavage/formation reactions and those without. The C products obtained from glucose are particularly satisfying because their syntheses enjoy a 100% carbon economy. Although multiple derivatives of glucose retaining all six carbon atoms in their moiety are well-documented, they are somewhat dispersed in the literature and never delineated coherently from the perspective of their carbon skeleton. The glucose-derived chemical intermediates discussed in this review include polyols like sorbitol and sorbitan, diols like isosorbide, furanic compounds like 5-(hydroxymethyl)furfural, and carboxylic acids like gluconic acid. Recent advances in producing the intermediates mentioned above from glucose following chemocatalytic routes have been elaborated, and their derivative chemistry highlighted. This review aims to comprehensively understand the prospects and challenges associated with the catalytic synthesis of C molecules from glucose.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know