Synergy of a heteroatom (P-F) in nanostructured SnOas an anode for sodium-ion batteries
Sustainable Energy and Fuels, ISSN: 2398-4902, Vol: 5, Issue: 10, Page: 2678-2687
2021
- 2Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Na-ion batteries (SIBs) have attracted attention due to their economics and eco-friendly nature compared to lithium-ion batteries. Tin-based compounds are focused for SIBs owing to high theoretical capacities, though they have problems such as lower conductivity and pulverization that hinder their practical applications. Nanoscaling of the tin-based anode material with dual heteroatom doping having different functions might improve the electrochemical performance. Hence, a green approach for the synthesis of dual ion (P-F)-doped nanostructured Sn3O4 by a hydrothermal method was demonstrated with excellent Na-storage performance. A strategy of synthesizing dual ion-doped Sn3O4 can boost electrochemical performances owing to lattice distortion caused by defects, improved sodium ion conductivity and structural stability of electrodes. Significantly, P and F doping into Sn3O4 exhibits high specific capacity with superior rate capability, i.e. 705 mA h g-1 at 50 mA g-1 and 136 mA h g-1 at current density 5 A g-1. The physical insights into the Sn3O4 structure due to doping are illustrated, and the relationship with capacity density was investigated. This dual-ion doping strategy may motivate constructing high-performance SIBs. This journal is
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know