PlumX Metrics
Embed PlumX Metrics

Dynamically tunable bound states in the continuum supported by asymmetric Fabry-Pérot resonance

Physical Chemistry Chemical Physics, ISSN: 1463-9076, Vol: 24, Issue: 34, Page: 20125-20129
2022
  • 17
    Citations
  • 0
    Usage
  • 4
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    17
    • Citation Indexes
      17
  • Captures
    4

Article Description

The dynamic regulation of quasi-bound states in the continuum (quasi-BIC) is a research hotspot, such as incident angle, polarization angle, temperature, a medium refractive index, and medium position regulation. In this paper, a dual-band ultra-high absorber composed of upper asymmetric graphene strips and lower graphene nanoribbons can generate a symmetry-protected quasi-BIC and Fabry-Pérot resonance (FPR) mode. The band structure further demonstrates the symmetry-protected BIC. Research shows that the absorption system can withstand a relatively wide range of incidence and polarization angles. Interestingly, the quasi-BIC and FPR modes can be modulated by the Fermi levels of the graphene1 and graphene2, respectively, realizing a multifunctional switch with high modulation depth (MD > 94%), low insertion loss (IL < 0.23 dB), and large dephasing time (DT > 4.35 ps). This work provides a new approach for the dynamic regulation of quasi-BIC and stimulates the development of multifunctional switches in the absorber.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know