Shearing bridge bonds in carbon nitride vesicles with enhanced hot carrier utilization for photocatalytic hydrogen production
Catalysis Science and Technology, ISSN: 2044-4761, Vol: 12, Issue: 13, Page: 4193-4200
2022
- 34Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Although carbon nitride (g-CN) is a common photoconversion material, its photocatalytic activity is constrained by fast carrier recombination and weak light absorption. Here, a precursor reforming strategy is developed to construct melamine precursor rods with an etched surface. After being calcinated, the morphology of the melamine precursor is transformed to interconnected vesicles with open characteristics. In addition, XPS analysis and DFT calculations demonstrate the formation of oxygen-containing groups in the open vesicles, thereby boosting charge separation for surface photocatalytic H production. Such a synergistic regulation strategy produces superior visible-light photocatalytic activity (608.3 μmol h g), and the H production rate is 4.43-times higher than that of bulk g-CN. These findings suggest an accessible way to construct effective photocatalysts via a precursor reforming strategy that can efficiently boost carrier production and spatial separation.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know