Breaking the sodium solubility limit for extraordinary thermoelectric performance in p-type PbTe
Energy and Environmental Science, ISSN: 1754-5706, Vol: 15, Issue: 9, Page: 3958-3967
2022
- 49Citations
- 14Captures
Metric Options: Counts3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The thermoelectric performance of a given material is closely related to its carrier concentration. However, the maximum solubility of dopants in matrixes is a key limitation for improving the carrier concentration, which may result in an underestimated figure-of-merit ZT. Here we show that Na solubility in the PbTe-x% AgInSe (LISST) system is largely enhanced exceeding its conventional solubility limit. The enhanced Na solubility facilitates band convergence corroborated by the Pisarenko relationship and temperature-dependent Hall coefficient measurements. Accordingly, we achieve a large power factor of ∼28.4 μW cm K at 873 K for PbNaTe-0.5% AgInSe. In addition, the lattice thermal conductivity is suppressed with increasing Na content. Hence, the quality factor is largely boosted especially at high temperatures due to the enhanced weighted mobility and depressed lattice thermal conductivity. Consequently, an ultrahigh figure-of-merit ZT of ∼2.5 at 773 K and a large average ZT (ZT) of ∼1.5 at 323-873 K are achieved in PbNaTe-0.5% AgInSe. Our findings demonstrate that a synergistic optimization of electrical and thermal properties can be realized through breaking the solubility limit of the doped component, providing a promising path for the enhancement of thermoelectric performance.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know