Systematic analysis of curvature-dependent lipid dynamics in a stochastic 3D membrane model
Soft Matter, ISSN: 1744-6848, Vol: 19, Issue: 7, Page: 1330-1341
2023
- 1Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
To minimize the free energy of the system, lipid membranes display curvature-dependent rearrangements at the local and global scale. The optimal membrane shape is generally approximated by averaging the curvature preference of individual lipids across the whole surface. Potential stress due to imperfections in lipid packing caused by local lipid inhomogeneities, however, is frequently neglected. Here, we developed a stochastic 3D membrane model to investigate the relevance of this parameter for shape-dependent lipid and membrane dynamics. A systematic analysis of the discretized Helfrich type Hamiltonian indicates that stress-energy arising from imperfections in packing is analogous to van der Waals interactions, jointly determining membrane shape and localization of curvature-sensitive lipids based on their relative strengths. Insights from this work can be used to characterize natural and design synthetic agents for membrane-shape changes.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85147339229&origin=inward; http://dx.doi.org/10.1039/d2sm01260j; http://www.ncbi.nlm.nih.gov/pubmed/36692259; https://xlink.rsc.org/?DOI=D2SM01260J; https://dx.doi.org/10.1039/d2sm01260j; https://pubs.rsc.org/en/content/articlelanding/2023/sm/d2sm01260j
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know