Polybenzimidazoles (PBIs) and state-of-the-art PBI hollow fiber membranes for water, organic solvent and gas separations: a review
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 10, Issue: 16, Page: 8687-8718
2022
- 64Citations
- 67Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
As an attractive candidate material, polybenzimidazole (PBI) has been explored for fabricating hollow fiber membranes (HFMs) employed in liquid and gas separations since the 1970s. Some of its membranes have achieved industrial requirements under extremely harsh process environments (i.e., pH extremes, high temperatures, chlorine, organic solvents) due to its structural rigidity, robust mechanical stability, and outstanding chemical resistance. The development of high-performance industrially durable PBI HFMs is challenging owing to the complex interactions among the PBI polymer, solvents, and coagulant media during the non-solvent induced phase inversion process. State-of-the-art technologies have been developed to fabricate macrovoid-free PBI HFMs through non-solvent induced phase separation. Moreover, the chemically modified PBI membranes, PBI blended membranes and PBI composite membranes can not only improve the chemical resistance in organic solvents but also enhance the separation performance. The recently developed PBI gas separation HFMs also exhibit outstanding permselectivity and productivity exceeding the 2008 Robeson's upper bound for H/CO separation at elevated temperatures (>200 °C). Therefore, this review aims to offer useful guidelines for researchers who are interested in PBI membranes for sustainable water and energy production. Both challenges and future opportunities of developing PBI-based HFMs will also be summarized and analyzed.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know