A nitrogen- and carbonyl-rich conjugated small-molecule organic cathode for high-performance sodium-ion batteries
Journal of Materials Chemistry A, ISSN: 2050-7496, Vol: 10, Issue: 30, Page: 16249-16257
2022
- 16Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Organic-based cathode materials have attracted considerable attention for sustainable Na-ion batteries due to their great promise to overcome the issues arising from the insertion of large Na into the rigid structures of conventional transition-metal-containing inorganic electrodes. The structural flexibility as a result of weak intermolecular interactions and simple electron- and ion-storage mechanisms found in organic compounds ensure facile and reversible transport of Na ions. To address the general drawbacks of small-molecule organic electrodes such as material dissolution in commonly used organic electrolytes and poor electronic conductivity, we report the use of a nitrogen- and carbonyl-rich highly extended π-conjugated small molecule, hexaazatrianthranylene (HATA) embedded quinone (HATAQ), as a cathode for sodium-ion batteries. The unique hydrogen bonds between highly functionalized conjugated HATAQ molecules allow supramolecular graphite-like 2D layered arrangements in the solid state which help facilitate the structural stability during long-term cycling and promote charge transfer. The compound delivers a capacity as high as 460 mA h g at 500 mA g and an excellent capacity retention of 99% (∼138 mA h g) after 5000 cycles at an extremely high rate of 60 A g. The reaction kinetics and redox mechanism of the material have been elucidated by several characterization techniques together with density functional theory (DFT) studies. The insights gained in this work could pave the way for ultra-high-performance small-molecule organic cathodes for sustainable energy storage.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know