Chiral coordination compounds with exceptional enantioselectivity
Journal of Materials Chemistry C, ISSN: 2050-7534, Vol: 10, Issue: 45, Page: 17127-17134
2022
- 8Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Systematic discovery of crystalline materials with noncentrosymmetric (NCS) structures revealing the structure-derived functional properties is an ongoing challenge. Two Zn-based chiral coordination compounds, [Zn((R,R)-TBPG)(HO)]·4HO [(R)-Zn] and [Zn((S,S)-TBPG)(HO)]·4HO [(S)-Zn] (TBPG = terephthaloyl-bis-phenyl glycine), were successfully synthesized via mild solvothermal reactions with the aid of the newly designed chiral organic ligands. (R)-Zn and (S)-Zn crystallizing in the NCS polar space group, P2, present very rare bilayer structures attributed to the strong π-π and hydrogen bonding interactions. Powder second harmonic generation (SHG) measurements indicate that (R)-Zn and (S)-Zn reveal SHG intensities of about 0.5 times that of KHPO under 1064 nm radiation. The title compounds are very stable in a variety of different solvents in wide pH ranges. Surprisingly, ethyl alcohol is produced if crystals of the reported homochiral compound are immersed in diethyl ether. The homochiral title compounds also reveal exceptionally enantioselective sensing behavior toward the chiral amino acid, histidine. A plausible mechanism for the enantioselective discrimination of the reported materials is also proposed.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know