Conversion-intercalation competing behaviour of halogen storage on graphite electrode from fluid ZnCl/ZnBr hydrates
Chemical Communications, ISSN: 1364-548X, Vol: 60, Issue: 8, Page: 1027-1030
2023
- 1Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Zinc-based aqueous dual-ion batteries (ADIBs) with halogen-graphite intercalation compound positive electrodes are among the most competitive candidates for next-generation electrochemical energy storage systems. However, most of the electrolytes employed have been gel-like electrolytes; hence, a fundamental understanding of the halogen storage process using fluid hydrates will be essential for constructing efficient Zn-based ADIBs. Herein, the halogen storage mechanism on a graphite electrode from fluid ZnCl/ZnBr hydrates is studied by experimental and computational methods. The results indicate that the halogen storage mechanism is a competition between conversion and intercalation. Moreover, the macroscopic electrode reaction is determined by both the ion-pair solvation state at the graphite-electrolyte interface and the subsequent reactant supply is influenced by the electrode reaction rate.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85183312677&origin=inward; http://dx.doi.org/10.1039/d3cc04755e; http://www.ncbi.nlm.nih.gov/pubmed/38174354; https://xlink.rsc.org/?DOI=D3CC04755E; https://dx.doi.org/10.1039/d3cc04755e; https://pubs.rsc.org/en/content/articlelanding/2024/cc/d3cc04755e
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know