Automated quantum chemistry for estimating nucleophilicity and electrophilicity with applications to retrosynthesis and covalent inhibitors
Digital Discovery, ISSN: 2635-098X, Vol: 3, Issue: 2, Page: 347-354
2024
- 6Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Reactivity scales such as nucleophilicity and electrophilicity are valuable tools for determining chemical reactivity and selectivity. However, prior attempts to predict or calculate nucleophilicity and electrophilicity are either not capable of generalizing well to unseen molecular structures or require substantial computing resources. We present a fully automated quantum chemistry (QM)-based workflow that automatically identifies nucleophilic and electrophilic sites and computes methyl cation affinities and methyl anion affinities to quantify nucleophilicity and electrophilicity, respectively. The calculations are based on rSCAN-3c SMD(DMSO) single-point calculations on GFN1-xTB ALPB(DMSO) geometries that, in turn, derive from a GFNFF-xTB ALPB(DMSO) conformational search. The workflow is validated against both experimental and higher-level QM-derived data resulting in very strong correlations while having a median wall time of less than two minutes per molecule. Additionally, we demonstrate the workflow on two different applications: first, as a general tool for filtering retrosynthetic routes based on chemical selectivity predictions, and second, as a tool for determining the relative reactivity of covalent inhibitors. The code is freely available on GitHub under the MIT open source license and as a web application at https://www.esnuel.org.
Bibliographic Details
Royal Society of Chemistry (RSC)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know